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The one-dimensional stochastic diffusion model of a continuous flow mixer is proposed incorporating
(contrary to commonly used diffusion models) a distribution of velocities of diffusing particles. Sim-
plifying assumptions enabled us to derive an analytical expression for the liquid residence time dis-
tribution and concentration profile inside the mixer. For extreme values of parameters, the model
becomes identical with the common idealized models usually adopted in chemical engineering.

In our previous paper1, certain problems related to the description of a flow-through
equipment by means of the classical diffusion model were discussed. The problem of
proper formulation of boundary conditions was analyzed. Danckwerts’ well-known
one-dimensional axial dispersion model of a flow reactor was reported2. It was em-
phasized that the general diffusion model (without a source term) describing tempo-
ral changes of a component concentration in a three-dimensional space by means of a
parabolic partial differential equation (PPDE, cf. Eq. (6) in ref.1) can be reformulated in
the form of a stochastic differential equation (SDE, cf. Eq. (17) in ref.1). Random tra-
jectory of single liquid particle motion generated by this SDE is characterized by tran-
sitive probability density function, this being a solution of diffusion model. By the term
liquid particle, either single molecule or a small volume of liquid negligible with re-
spect to the total volume of system is denoted. The value of transitive probability den-
sity is directly proportional to the local component concentration.

Owing to the presence of Wiener process in the SDE, serious problems in physical
interpretation of results appear. Problems stem particularly from the fact that time deri-
vative of the Wiener process approaches infinity at each time instant, therefore, the
liquid particle velocity also takes permanently an infinite value. Physically unrealistic

Application of Stochastic Diffusion Processes 1551

Collect. Czech. Chem. Commun. (Vol. 59) (1994)



solution of the PPDE, supposing unlimited rate of diffusion, arises as a consequence of
this drawback of common diffusion models.

Further problems arise from the fact that, according to diffusion model, particles of a
component can move with the non-zero probability in the direction opposite to the
direction of the carrier liquid stream flow (consequence of the Gaussian distribution of
the Wiener process). The possibility of this counter-motion is frequently in contradic-
tion to the real situation at the inlet and/or outlet of a flow mixer. The liquid residence
time in the system can then be defined only with a certain degree of ambiguity.

The first drawback of diffusion models (i.e., the step change of concentration at the
beginning of the process) can be solved by formulating the SDE in a so-called dynamic
form involving also forces acting on the moving particles3. By a proper definition of
coefficients in these equations, the second drawback (significant counter-motion of
component particles at the inlet and outlet of the mixer) can be solved. This approach
will be used in this paper for the description of a one-dimensional flow mixer.

Two types of continuous flow systems are commonly considered in chemical engineering
literature: an open system and a closed one (cf. Figs 3.1 and 3.3 in monograph4). This
classification reflects application of different types of boundary conditions.

THEORETICAL

An incompressible liquid flowing through systems with one inlet and one outlet is con-
sidered (Fig. 1). A detectable component A is injected into the liquid stream uniformly
over the system cross-section at the inlet. Only one-dimensional motion of both carrier
liquid and component A particles is supposed (in other words: a projection of the mo-
tion on the longitudinal system axis is considered).

FIG. 1
Two basic types of continuous flow mixers: a An open mixer, b a closed mixer
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Open Mixer

An equality of the cross-sectional area of the mixer itself and of the inlet and outlet
mixer openings is a characteristic feature of this system (Fig. 1a). An attempt to formu-
late a one-dimensional dynamic SDE describing particle motion inside this system was
made in one of our previous papers5 assuming that both deterministic and stochastic
forces act on particles. These forces were considered to be linear functions of particle
velocity V(t) which can take only finite values

dV(t) = [α − βV(t)] dt + √2[γ + δV(t)] dW(t)  , (1)

dX(t) = V(t) dt  ,                            β > 0  . (2)

The corresponding Kolmogorov equation reads as follows6

∂f
∂t

 + v 
∂f
∂x

 + 
∂
∂v

[(α − βv) f] − 
∂2

∂v2[(γ + δv)2 f] = 0  , (3)

where f(x,v;t) is the simultaneous transitive probability density function for the particle
position and velocity. This function can be interpreted as a product of the component A
concentration and conditional probability density function for the particle velocity at a
fixed position

kf(x,v;t) = ρA(x;t) fv(v;t|x)  , (4)

where k denotes the proportionality constant given by the total amount of component A
inside the system (cf. e.g. ref.7)

ρA(x;t) = k ∫f
−∞

∞

(x,v;t) dv  . (5)

Equation (3) is more complex than Eq. (6) in ref.1 for spatially one-dimensional system.
However, the initial and boundary conditions for Eq. (3) are more natural: The initial
condition is given by an initial distribution of particle velocities and positions at the
mixer inlet, the boundary conditions with respect to the velocity must fulfil the require-
ment of convergence of f(x,v;t) to zero with the velocity absolute value increasing to
infinity. Equation (3) involves, contrary to common diffusion equation (Eq. (6) in ref.1),
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only the first derivative with respect to the spatial coordinate. Therefore, only one
boundary condition is to be specified (usually at the mixer inlet (x = 0))

lim
x→0+

 f(x,v;t) = 
1
k
ρA(0,t) fv(v;t|0)  , (6)

i.e., the component A concentration and particle velocity distribution are prescribed. It
may be supposed that particle velocities do not differ significantly from the mean liquid
velocity at the inlet.

The formulation of Eq. (1) does not eliminate the second drawback of the common
diffusion models, i.e., the possibility of particle counter-motion at the mixer outlet. The
ordinates of the Wiener process are Gaussian distributed with zero mean6, hence, the
solution of Eq. (1) can take, in general, both positive and negative values.

In order to eliminate this possibility, Eq. (1) can be simplified by putting γ = 0. Then
the random force is directly proportional to the particle velocity. Therefore, supposing
simultaneously α > 0 and initial particle velocity to be positive, the particle velocity
can take only positive values at each time instant t > 0. The effect of the Wiener pro-
cess is attenuated by decreasing velocity and, eventually at zero velocity, this effect
vanishes completely. Therefore, the velocity cannot change the sign (direction), cf. e.g.
ref.8. The same holds in case of negative velocity, i.e., supposing α < 0 and negative
initial velocities. In this way the simplification γ = 0 enables us to formulate the sto-
chastic diffusion equation ensuring only unidirectional particle motion. The particle,
once leaving the system (at x = L), will never return into the system with probability
one.

The Kolmogorov diffusion equation, corresponding to SDEs (1) and (2), has then the
form

∂f
∂t

 + v 
∂f
∂x

 + 
∂
∂v

[(α − βv) f] − δ2 ∂2

∂v2(v2f) = 0  . (7)

The solution of this equation does not suffer from the physically unrealistic features of
the common one-dimensional diffusion model, i.e., the step change of concentrations at
the inlet and the counter-motion of particles at the outlet.

However, the form of Eq. (7) is too complex, and its analytical solution was not
found. Previously5 a simplification was adopted enabling us to solve Eq. (7) in case of
very short mixer. Here this simplification is extended to one-dimensional systems of
arbitrary length: It is assumed that both deterministic and stochastic forces act on the
particles over only a very short distance from the mixer inlet. The stationary velocity
distribution is attained during liquid passage over this interval. The forces have negli-
gible effects along the remaining part of the mixer. The Kolmogorov diffusion equation
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for the stationary velocity distribution then reads, considering Eq. (1) and γ = 0, as
follows

d
dv

[(α − βv) fv] − δ2 d2

dv2(v2fv) = 0  . (8)

The solution of Eq. (8) has a form of the gamma-distribution with the reciprocal argu-
ment 1/v

fv(v) = 
(e/v)b+1

eΓ(b)  exp (−e/v)  ,    e = 
α
δ2  ;    b = 1 + 

β
δ2  , (9)

where Γ(b) denotes the complete gamma-function (see e.g. ref.9). According to the last
assumption, coefficients α, β and δ in Eq. (7) acquire negligible values at a larger
distance from the mixer inlet. Therefore, in this mixer region,

∂f f

∂t
 + v 

∂f f

∂x
 = 0  . (10)

The fundamental solution of Eq. (10) is

f f(x,v;t) = f
~
(x − vt)  ; (11)

the actual form of function f f(x,v;t) depends on the initial and boundary conditions. The
component A concentration at any position inside the mixer at any time can be evalu-
ated by a so-called randomization of a parameter9 using Eq. (5)

ρA(x;t) = kfx(x;t) = k ∫ 
−∞

∞

f
~
(x − vt) fv(v) dv  . (12)

The function f f(x,v;t) is identical with the Dirac δ-function, i.e., f f(x,v;t) = δ(x) if δ-im-
pulse of component A is introduced at the system inlet. The component A concentration
is then given by the relation

ρA(x;t) = kfv(x/t)


dv
dx





 = 
k
t
fv(x/t)  . (13)

The probability density function ft(t) of residence time of liquid particles inside the
mixer can be derived by means of the following operation (see e.g. ref.10)
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ft(t) = − ∂
∂t

 ∫ 
0

L

fx(x;t) dx  , (14)

resulting in this case in the gamma-distribution

ft(t) = Lfv(L/t)/t2 = 
κb

Γ(b)(κbt)b−1 exp (−κbt)  ,      κ = e/(Lb)  . (15)

The hitherto described approach allowed us to find a solution of Eq. (7) in the analyti-
cal form. The gamma-distribution (15) is frequently used for the description of
residence time distribution in flow systems11.

It will be shown that relations derived in this section describe the limiting case beha-
vior of the closed mixer analyzed below.

Closed Mixer

The closed mixer4,11 is a flow system with cross-sectional areas of the inlet and outlet
openings smaller than the cross-sectional area of the mixer itself (in a plane perpen-
dicular to the system axis). Therefore, the mixer is closed, excepting for the inlet and
the outlet opening area, with impermeable walls at mixer inlet and outlet (points x = 0
and x = L), Fig. 1b. The particles of component A and of the carrier liquid reverberate
on these walls. Liquid circulation arises in a real mixer in this way; in a one-dimen-
sional model, the liquid circulation is replaced with the swinging motion of liquid par-
ticles from the one end of the mixer to the other one. This motion terminates when the
particle leaves the system (after reaching the outlet opening). Let p denotes the prob-
ability that a particle will leave the system when reaching the position x = L. Then the
probability of particle reverberation back into the mixer is, supposing that the particle
does not adhere to the wall,

q = 1 − p  . (16)

For a quantitative description of the particle motion, the assumptions adopted in pre-
vious section are used together with the following ones:

The probability of particle reverberation at the mixer inlet (x = 0) is equal to one. At
the mixer outlet (x = L), the ratio of the probability of particle reverberation to the
probability of particle escape is directly proportional to the instantaneous particle velocity.
This assumption is based on the idea that the probability of the particle attraction into
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the outlet stream of the carrier liquid increases with decreasing particle velocity. There-
fore, the following relations

q = 1  ,     (X(t) = 0)

q
p

 = 
V(t)
w

  ,     (X(t) = L) (17)

hold where w is a constant.
The particle velocity sign (direction of motion) changes in the course of the reverbe-

ration. The forces acting on the particles as well as the range of their action after rever-
berations are supposed to be analogous to the forces acting on the particle after its first
entry into the mixer. The forces acting at the mixer outlet are supposed to be identical
with the forces acting at the inlet, except for the active force (characterized by coeffi-
cient α) which changes its direction (sign). The effects of these forces are, therefore,
localized to the only close vicinity of the outlet wall, i.e., to the mixer subregion where
significant change of the liquid flow direction occurs. The steady particle motion is
considered outside the close vicinity of the mixer inlet and outlet.

Equation (8) is invariant with respect to the change of signs of v and α even when
particle moves in negative direction of the x-axis, therefore, its solution (9) remains
unchanged. Equation (10) remains identical for the motion in positive direction of the
x-axis, but the sign of the velocity changes in case of the motion in negative direction
of the x-axis. Hence, set of two equations arises

∂f f

∂t
 ± v 

∂f f

∂x
 = 0  ,     (v > 0)  . (18)

Let symbol fn
− denotes the particular solution of Eq. (18) during the particle motion

against the positive direction of x-axis after the n-th particle reverberation at the mixer
outlet but before reaching the mixer inlet (x = 0). In an analogous way, symbol fn

+

denotes the particular solution of Eq. (18) during the particle motion in positive direc-
tion of x-axis after the consecutive reverberation at the inlet. Thus, the set of particular
solutions is obtained

fn
+ = fn

+(x − vt)  ,     (n = 0,1,2,...)  ,

fn
− = fn

−(x + vt)  ,     (n = 1,2,3,...)  . (19)
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The actual form of functions fn
+ and fn

− depends again on the initial and boundary
conditions

lim
x→L−

 fn
−(x + vt) = q lim

x→L−
 fn−1

+ (x − vt) + p lim
x→L−

 fn−1
+ (x − vt)  ,

lim
x→0+

 fn
+(x − vt) = lim

x→0+
 fn

−(x + vt)  , (20)

where n = 1,2,3,.... The last term on the right-hand side of the first of Eqs (20) ex-
presses the probability that the particle leaves the mixer before the n-th reverberation.
With respect to Eq. (16) and the second of Eqs (17), the following relation holds

q = 
v

v + w
  . (21)

The sum of the particular solutions forms the general solution

fc(x|v;t) = f0
+ + ∑ 

n = 1

∞

(fn
− + fn

+)  . (22)

The integral ∫ fc
x

x + ∆x

(x| v;t) dx equals to the probability that the position X(t) of particle
moving just with the velocity v lies within the interval <x, x + ∆x). In a way similar to
Eq. (12), the component A concentration at position x can be evaluated by means of the
velocity randomization

ρA(x,t) = kfx(x;t) = k ∫ fc
0

∞
(x|v;t) fv(v) dv  . (23)

The function ρA(x;t) defined by Eq. (23) is to be considered as the component A con-
centration averaged over the mixer cross-section.

Supposing the concentration signal in the form of the Dirac δ-function is introduced
at the mixer inlet at time t = 0, the particular solutions are

fn
+ = δ(x + 2nL − vt) qn  ,

fn
− = δ(x − 2nL + vt) qn  , (24)
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where the term qn expresses the probability of particle being still inside the mixer after
n-th reverberation. The component A concentration profile inside the mixer is given by
the relation (see Appendix)

ρA(x;t) = 
k
t
 









∑ 

n = 0

∞

fv(vn
+) Ψn(vn

+) + ∑ 
n = 1

∞

fv(vn
−) Ψn(vn

−) 









  , (25)

(0 ≤ x ≤ L)  ,

where

Ψn(v) = 




v
v + w





n

 = qn  , (26)

and

vn
± = (2nL ± x)/t  . (27)

By means of the operation used in Eq. (14), the probability density function of
residence time in the closed mixer is obtained

ft(t) = 
w
t

 ∑ 
n = 0

∞

fv[(2n + 1) L/t] Ψn+1[(2n + 1) L/t]  , (28)

where parameter w is defined by

w = 2εL  . (29)

The mean residence time is (see Appendix)

t
_
 = 

1
κ  + 

1
ε   . (30)

Equations (25) and (28) can be transformed to a dimensionless form by introducing the
dimensionless variables

t∗  ≡ t/t
_
 = 

t
1/κ + 1/ε  ,     x∗  ≡ x/L  ,     v∗  ≡ vt

_
/L  , (31)
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and the dimensionless parameter

Ω = 
κ
2ε  . (32)

The dimensionless concentration profile inside the mixer is

ρA
∗ (x∗ ;t∗ ) = LρA(x∗ L;t∗ t

_
)/k = 

1
t∗

 






∑ 

n = 0

∞

fu(un
+) Ψn(un

+) + ∑ 
n = 1

∞

fu(un
−) Ψn(un

−)






  , (33)

(0 ≤ x∗  ≤ 1)  ,

where un
± = (2n ± x∗ )/t∗  ,  Ψn(u) = [uΩ/(uΩ + 2Ω + 1)]n  , and fu(u) = Lfv(uL/t

_
)/t
_
.

The dimensionless probability density of the residence time is

ft
∗ (t∗ ) = t

_
ft(t∗ t

_
) = 

2Ω + 1
Ωt∗

 ∑ 
n = 0

∞

fu[(2n + 1)/t∗ ] Ψn+1[(2n + 1)/t∗ ]  ,     (t∗  > 0)  . (34)

The variance and the asymmetry coefficient of the probability density ft
∗ (t∗ ) are (see

Appendix)

µ2 = 1 + 
1/b − 1

(1 + 2Ω)2  , (35)

µ3 = 2 + 
2[(1/b2 − 1) + 2Ω(5/b − 1)]

(1 + 2Ω)3   . (36)

RESULTS AND DISCUSSION

The derived component concentration profiles inside the mixer (Eq. (33), Fig. 2) and
the residence time distribution functions (Eq. (34), Fig. 3) involve two parameters: b
and Ω. The physical meaning of the first one was discussed earlier5. The quantity b − 1
can be interpreted as the ratio of the nonrandom to the random force acting against the
particle motion. Equation (15) is formally identical with the residence time distribution
in a cascade of the ideal mixers11 for integer values of b. Hence, the parameter b can be
considered as the “number of mixers in a cascade”.

The physical meaning of parameter Ω can be clarified by means of liquid circulation
within a mixer: Let symbol V

.
 denotes the volumetric flow rate of liquid through the
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mixer. The total volume of the closed mixer (Fig. 1b) is divided into two parts: the part
of volume Vp in which the liquid flows without circulation, and the second part of
volume Vc with the circulating flow. The ratio of these two volumes is assumed to be
approximately constant at a steady state. The mean residence time of the liquid in the
non-circulation part of the mixer volume is 1/κ = Vp/V

.
, and in the circulation part of the

mixer volume, 1/ε = Vc/V
.
. By introducing these mean residence times into Eq. (30), the

total mean residence time is obtained t
_
 = 1/κ + 1/ε = (Vp + Vc)/V

.
, and with respect to Eq.

(32), one can write Vc/Vp = 2Ω. The volume Vc can be divided into two parts: Vc
+ with

the liquid moving in the positive direction of the x-axis, and Vc
− with the liquid moving

in the opposite direction. The ratio of the mixer subvolumes is then (Vc
+ + Vc

−)/Vp . Both
numerator and denominator of this fraction can be multiplied by κ, then quantity
Vc

+κ = V
.

c is equal to the volumetric flow rate in the circulating liquid stream. The pro-
duct Vc

−κ is equal to the volumetric flow rate in the circulating liquid stream in the case
of an incompressible liquid. Hence

Ω = 
V
.

c

V
. (37)

denotes the intensity of the liquid circulation within the mixer.

FIG. 2
Spatial profiles of component A concentration inside the closed mixer at time t* elapsed since the
injection of the concentration impulse: a 1 t* = 0.1, 2 t* = 0.3, 3 t* = 0.5, 4 t* = 1.0, 5 t* = 3.0;
parameters: Ω = 0, b = 1; b 1 t* = 0.1, 2 t* = 0.3, 3 t* = 0.5, 4 t* = 1.0, 5 t* = 3.0; parameters: Ω =
30, b = 30
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The parameters b and Ω make the model considerably flexible. The circulation in-
tensity Ω may vary from zero to infinity, the parameter b takes values greater or equal
to one. For extreme values of parameters, the model converges to the simple idealized
models commonly used in chemical engineering:

1. Ω → 0. This case describes the non-circulating flow, i.e., the open mixer (Fig. 1a).
The circulation part of the mixer volume approaches zero, hence, the liquid residence
time inside this part of the mixer is also zero. The value of the parameter ε grows above
all limits. The concentration profile of the component A inside the mixer is expressed
by Eq. (13). The liquid residence time distribution at the mixer outlet is given by Eq.
(15) and is depicted in Fig. 3a (curves 1 and 2).

1.a. Ω → 0, b → ∞. The piston flow of liquid in the mixer corresponds to these
parameters. The concentration profile inside the mixer, as well as the residence time
probability density, are expressed by the Dirac δ-functions (see Appendix).

1.b. Ω → 0, b → 1. According to Eq. (15) the residence time distribution is

ft(t) = κ exp (−κt)  , (38)

i.e., the residence time distribution in an ideal mixer with the mean residence time 1/κ.
The concentration profile for this case is shown in Fig. 2a. The probability density of
residence time is depicted in Fig. 3a (curve 2). Hence, the proposed model at the given

FIG. 3
The residence time probability density function: a 1 Ω = 0, b = 5, 2 Ω = 0, b = 1, 3 Ω = 200, b = 1;
b 1 Ω = 50, b = 1, 2 Ω = 1, b = 5, 3 Ω = 0.5, b = 15
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parameter values supposes a passage of the particles through the mixer without mutual
mixing. An ideal mixer with the liquid macroflow11 corresponds to this situation.

Hitherto, we have considered the zero intensity of the liquid circulation inside the
mixer. At non-zero circulation intensity, the transversal liquid mixing inside the mixer
takes place.

2. Ω → ∞. The concentration of component A takes a constant value throughout the
mixer and decreases with increasing time (see Appendix)

ρA(x;t) = 
k
L

 exp (−εt)  . (39)

The residence time distribution has the form of the exponential function

ft(t) = ε exp (−εt)  , (40)

with the mean residence time 1/ε. In this case the model describes an “actual” ideal
mixer, i.e., a mixer with the liquid microflow. This case is depicted in Figs 2b and 3a
(curve 3). Figure 2b shows that already at Ω = 30 the concentration profile along the
mixer is almost flat after a very short time elapsed since the injection of the component
A impulse. Immediately after the beginning of the mixing process, the effect of this
impulse is clearly visible; the characteristic exponential form of the residence time
distribution is attainable at very high values of the circulation intensity (Ω ≈ 200) – Fig. 3a
(curve 3). At Ω ≈ 50 the effect of the injected impulse is still visible (Fig. 3b, curve 1).

A case of the weakly circulating flow is shown in Fig. 3b (curve 2). A passage of the
only slightly dispersed impulse through the mixer is clearly remarkable. The model is
capable of describing even multimodal residence time distributions (Fig. 3b, curve 3).

Obviously, the proposed model under the above-adopted simplifying assumptions
combines the gamma-distribution5,11 with the models involving recycle streams12. This
combination enables us to describe a very wide set of actual systems encountered in
chemical engineering.

Certain problems arise when estimating the model parameters from the measured
residence time distribution curves. The second and the third moment of the dimension-
less residence time distribution (Eq. (34)) are shown in Fig. 4. The values of the mo-
ments undergo remarkable changes at only low values of Ω (approximately for Ω < 2).
Equations (35) and (36) may be used for the evaluation of b and Ω using moments
evaluated from experimental data. A consequent accuracy improvement by means of
the proper non-linear regression method13 using Eq. (34) is possible. At higher Ω values
this approach is inappropriate because of the ambiguity of initial guess selection.
Therefore, Eq. (37) is recommended for the estimation of Ω using the additional
experimental data on the liquid circulation, obtained, e.g., in experiments with a
flow-follower14. In this region of Ω values, the b value does not influence the concen-
tration fluctuations inside the mixer markedly.
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Figure 2b shows that at higher Ω values, Danckwerts’ boundary condition2 prescrib-
ing zero concentration derivative at the mixer outlet is well fulfilled. Figure 2a, on the
contrary, shows that this condition can easily be corrupted, especially at high values of
b when the model approaches the plug-flow.

CONCLUSIONS

1. The presented stochastic model enabled us to improve the accuracy of the com-
monly used diffusion model, and the validity of general considerations disclosed in
previous paper1 was proved.

2. Together with the boundary conditions introducing the possibility of circulation of
diffusing particles into the model, the model makes possible the unambiguous defini-
tion of the residence time of each particle. The probability of returning the particle back
into the system from the outside of the mixer is equal to zero. Therefore, the residence
time distribution may be correctly defined.

3. The model, for extreme values of the parameters, tends to all models commonly
used in chemical engineering for description of flow systems.

In a paper under preparation15, the application of this model to an evaluation of the
reacting component conversion in an isothermal continuous flow chemical reactor will
be shown.

FIG. 4
The second central moment of the residence time distributions: a 1 b = 1, 2 b = 2, 3 b = 3, 4 b = 30;
b 1 b = 1, 2 b = 2, 3 b = 3, 4 b = 30

1564 Kudrna, Vejmola, Hasal:

Collect. Czech. Chem. Commun. (Vol. 59) (1994)



APPENDIX

Derivation of the Residence Time Distribution Function

When the Dirac impulse of the component concentration is imposed on the mixer inlet,
then during the initial period of the mixing process, Eqs (24) represent the solution of
Eqs (18) owing to the validity of the following conditions (with respect to the boundary
conditions (20))

lim
x→0+

 f0
+ = δ(x)  ,

lim
x→L−

 δ(x − 2L + vt) = lim
x→L−

 δ(x − vt)  ,

lim
x→0+

 δ(x − 2L + vt) = lim
x→0+

 δ(x + 2L − vt)  ,…

The Laplace transforms of the functions in Eqs (24) are

gn
+(s) = ∫ 

0

∞

δ(x + 2nL − vt) exp (−st) dt = exp [−s(2nL + x)/v]/v  ,

gn
−(s) = ∫ 

0

∞

δ(x − 2nL + vt) exp (−st) dt = exp [−s(2nL − x)/v]/v  . (A1)

Substituting these functions into the transformed Eq. (22), one obtains the relation

gc = gc(x,s,v) = 


 exp (−sx/v) ∑ 

n = 0

∞

Qn + exp (sx/v) ∑ 
n = 1

∞

Qn 


  /v = 

 = 



exp (−sx/v) + 2 cosh (sx/v) Q

1 − Q
 



 /v  , (A2)

where Q = q exp (−2sL/v). The sums in Eq. (A2) can be evaluated as the geometrical
progression sums as the probability q in a flow mixer must be always less then one.
Substituting from Eqs (A2) and (9) into Eq. (23), using a replacement v = L/z, and with
respect to Eq. (29), the following relation is obtained

gx(x,s) = ∫ 
0

∞

gc(x,s;v) fv(v) dv = 
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 = 
1
L

 ∫ 
0

∞

zft(z) 



exp (−r) + 

cosh (r) exp (−sz)
εz exp (sz) + sinh (sz)





 dz  , (A3)

where r = szx/L and ft(z) is defined in Eq. (15). An original coresponding to this func-
tion is given in Eq. (25). Equation (14) after the Laplace transformation reads as folows

gt(s) = −s ∫ 
0

L

gx(x,s) dx + lim
t→0

 ∫ 
0

L

fx(x,t) dx  ; (A4)

the last integral is equal unity for, at the given initial condition, the relation
lim
t→0

 fx(x,t) = δ(x) holds. On putting gx(x,s) from Eq. (A3) into Eq. (A4), changing order of

integration, and using the variable r defined post Eq. (A3), we obtain

gt(s) = −∫ 
0

∞

ft(z) ∫ 
0

sz




exp (−r) + 
cosh (r) exp (−sz)

εz exp (sz) + sinh (sz)



 dr dz + 1  . (A5)

Solving the inner integral and adopting certain rearrangements, we can write

gt(s) = ∫ 
0

∞
ft(z)εz

εz exp (sz) + sinh (sz) dz  . (A6)

The original to gt(s) is given by Eq. (28). Statistical moments of the distribution (A6)
may easily be derived using a relation9

mk = ∫ 
0

∞

tkft(t) dt = (−1)k 
dk

dsk gt(s) |s = 0  . (A7)

The first (negative) derivative of gt(s) with respect to s at s = 0 results in the relation

m1 = 
κb

Γ(b) ∫ 
0

∞

(κbz)b−1 exp (−κbz)[z + 1/ε] dz = 
Γ(b + 1)
Γ(b)κb

 + 
1
ε  = 

1
κ  + 

1
ε   , (A8)

hence, the validity of Eq. (30) is proved. The second and the third moments of function
gt(s) are

m2 = 
b + 1
κ2b

 + 
4
εκ  + 

2
ε2  , (A9)
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m3 = 
(b + 2) (b + 1)

b2κ3  + 
13(b + 1)

bκ2ε
 + 

18
κε2 + 

6
ε3  . (A10)

Simplification of Equations (A3) and (A6) at Extreme Parameter Values

1.a. ε → ∞. The second term after the summation mark inside the braces in Eq. (A3)
is equal zero in this case. Putting y = z(sx/L + κb) we obtain

lim
ε→∞

 gx(x,s) = 
(κb)b

LΓ(b) (sx/L + κb)b+1 ∫ 
0

∞

exp (−y) yb dy = 
b
e

 




e/x
s + e/x





b+1

,  e = κbL . (A11)

The original to this expression is given in Eq. (13). Using Eq. (A4) or directly Eq. (A6)
we can derive, in an analogous way, the relation

lim
ε→∞

 gt(s) = 




κb
κb + s





b

  . (A12)

The original to this expression is given in Eq. (15).
1.b. ε → ∞, b → ∞. By an rearrangement of Eq. (A11) we get

lim
ε,b→∞

 gx(x,s) = lim
b→∞

 
1

κL
 







κbL/x
s + κbL/x





κbL/x




x/κL

 = 
1

κL
 exp 




− sx

κL



  , (A13)

lim
ε,b→∞

 gt(s) = exp (−s/κ)  . (A14)

The originals to these transforms are

ρA(x;t) = kδ(x − κLt)  ,

ft(t) = δ


t − 

1
κ




  . (A15)

2. κ → ∞. Comparing Eqs (15) and (A3), one can recognize that the expressions in
front of the braces in Eq. (A3) may be written in the form

1
LΓ(b) (κbz)b exp (−κbz) = 

zft(z)
L

  . (A16)

Application of Stochastic Diffusion Processes 1567

Collect. Czech. Chem. Commun. (Vol. 59) (1994)



The Laplace transform of this relation (according to Eq. (A11) in case of κ growing
above all limits) is given by the relation

lim
κ→∞

 (z/L)gt(s) = lim
κ→∞

 (z/L) 


κb
κb + s





b

 = 
z
L

  . (A17)

The original corresponding to a constant is the Dirac δ-function, hence

lim
κ→∞

 zft(z)/L = lim
ω→0

 δ(z − ω)  , (A18)

where ω is a formal parameter. Substituting from Eqs (A16) and (A18) into Eq. (A3)
and after rearranging and performing the integration and the limit evaluation we have

lim
κ→∞

 gx(x,s) = lim
ω→0

 
ω
L

 



exp (−sωx/L) + 

2 cosh (sωx/L) exp (−2sω)
1 + 2εω − exp (−2sω)




 = 

 = 
1
L

 lim
ω→0

 
2ω

1 + 2εω − exp (−2sω) = 
1

L(ε + s)  . (A19)

The original to this function is given in Eq. (39). Adopting Eq. (A4), we can finally
obtain the Laplace transform of the residence time probability density at κ → ∞

lim
κ→∞

 gt(s) = −s
L

 ∫ 
0

L
dx

ε + s
 + 1 = 

ε
ε + s

  . (A20)

The backward transform is given in Eq. (40).

SYMBOLS

(Numbers in brackets refer to the equation with the first occurrence of the respective
symbol)
b parameter of gamma-distribution (11)
e constant proportional to mean particle velocity (9), m s−1

f probability density function for position and velocity (4), m2 s−1

ft∗ dimensionless probability density function for residence time (34)
fc probability density function for position and velocity (22), s−1

ft probability density function for residence time (14), s−1

fx probability density function for position (12), m−1

fv probability density function for velocity (9), m−1 s
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fv(v;(t|x) conditional probability density function for velocity (4), m−1 s
k component mass related to mixer cross-section (4), kg m−2

L length of reactor or mixer (15), m
mk k-th moment of residence time (A7), sk

n number of particle reverberations at outlet wall (19)
p probability of particle escape from mixer (16)
q probability of particle reverberation back into mixer (16)
t time (1), s
t mean residence time (30), s
t* dimensionless time (31)
v* dimensionless velocity of particle (31)
V random velocity of particle (1), m s−1

V
.

volumetric flow rate (37), m3 s−1

V
.

c circulation flow rate (37), m3 s−1

Vc mixer volume fraction with liquid circulation (Fig. 1), m3

Vp primary part of mixer volume (Fig. 1), m3

v velocity of particle (3), m s−1

W Wiener process (1), s1/2

w parameter in Eq. (17), m s−1

X random position of particle (2), m
x spatial coordinate (3), m
x* dimensionless spatial coordinate (31)
α constant of active force (1), m s−2

β constant of friction force (1), s−1

γ constant of random force (1), m s−3/2

Γ gamma function (9)
δ constant of random force of friction (1), s−1/2

ε reciprocal mean residence time in circulation part of mixer (30), s−1

κ reciprocal mean residence time in non-circulation part of mixer (15), s−1

µi i-th central moment of dimensionless residence time (35)
Ψn functions defined in Eq. (23)
ρA component A concentration (4), kg m−3

ρA
∗ dimensionless component A concentration (33)

Ω circulation intensity (32)
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